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This paper is concerned with the problem of constructing the cav- 
itational flow of a ponderous fluid over a smooth arc for a given veloc- 
ity distribution on the arc. Similar problems for an imponderable 

fluid were examined in [1-4] .  The flow of a ponderous fluid over 
polygonal obstacles was investigated in [5,6] and in the linear formu- 

lation in [7,8]. 
w General solution of the problem. We consider the flow of a 

ponderous fluid, unbounded in the upward direction, over the smooth 
arc OA on a horizontal straight base in accordance with the Ryabushi- 
nskii model and with reflection (Fig. 1). We introduce the notation: 
V~ is the velocity of oncoming flow; V 0 is the velocity at the separa- 
t/on point A; S o is the arc length. 

Let the velocity distribution on arc OA be given in the form of a 
function in the arc coordinate 

V = Vo/(s) ( s = S / & ,  O%s..< 1). 
(1.1) 

Here, f(s) is a single-valued positive function satisfying a H61der 
condition and the conditions ~;(0) = 0 and ~(1) = 1. 

It is necessary to construct the equation of the contour and the free 
boundary and to find the contour drag. Using symmetry, we consider 
only the second quadrant of the physical plane z = x + iy. 

We introduce the Joukowski function 

The solution of the problem can be reduced to finding the rela- 
tions W(g) and F(g) where g varies in a certain canonical region. As 
this region we select the second quadrant of the plane g = g + i~1. We 
conformally map the flow region onto the region g with the point cor- 
respondence indicated in Figs. 1 and 2. 

It is easy to see that the function which maps the region of varia- 
tion of complex potential W onto the second quadrant of the g-plane 
has the form (Fig. 3): 

W - -  ~Po~ 
V :  + ~ (w  = ~ + ir (1.2) 

Using (1.1) and (1.2) together with the relation V = d~o/ds, we 
obtain an equation for s(g), which gives the correspondence between 
points on arc OA and points on ray ( - -~ ,1]  of the g-plane 

s 
r % -7 VoSo f / (s) ds 

],/-c~ -}- ~"* 0 (1.3) 

On the imaginary semiaxis of the g-plane the function g(g) is real 
and continuous. In accordance with the symmetry principle we con- 
tinue it onto the entire upper hag-plane. Now F(g) is definite and 
analytic in the upper hag  of the plane ~ and on the real axis it satis- 
fies the conditions ReF (g) = in f(s(g)), [gl > 1 and ReF(g) = u(g), 

Here, on the segment [--1,1] of the real axis g we have introduced 
the notation F = u + iv. The problem of finding a function F(g) in ac- 
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cordance with the above bound ary conditions is solved by a C auchy- type 
integral: 

-1_ co 1 

s ( ~ ) =  .q/-k :oo~ + + I ~'(~) 
dt . 

- -  - 1  ( 1 . 4 )  

tf the function u (~), ~ C [ - - , , t ]  is known, (1.2) and (1.4) give the 
general solution. Thus, from (1.2), (1.4), and the expression for the 
JoukowsM function, we obtain 

o e-FG) 

--~o ( c2 + ~2)":~ (1.5) 

Hence, letting ~ tend to G we obtain the equation of the contour, 

e~~ t 1 ei[q(~)-r-q)(u, ~)] d~ 
z --  Vo -~ / (s (4)) (: + ~"@'~ 

-i. co 

( D ( u , ~ ) = @  i u ( t ) d r ,  ]~[>~'1 t -- ~. : (1,6) 
- 1  

we obtain the equation of the free boundary, 

z = Zo @ Toc~ f e -u g~-i[p(=.)-~-J(u, ~)] d~ 
(c'- z_ ~..)':~ 

-r co 

P ( ~ ) = - h -  t - ~  ZCJ  ~ ' 
- o o  1 

L 

--1- 
(1.7) 

Here, z0 = :% + iy0 is the coordinate of separation point A. The 
drag of the arc 

so 
Xo ~ f (P--Pc) sin@rig. (1.8) 

o 

Here, p(S) is the pressure distribution on the arc; Po is the pressure 
in the cavity; O(S) is the angle between the tangent to the contour at 
the point having the arc abscissa S and the x-axis. From the Bernoulli 
integral 

P - -  Po = I/2 p (V% - -  V~) + y (yo - -  y )  

A X' 
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Substituting into (1.8) the expression for p - P0 and going over to 
the variable g, we obtain 

X : + p%V0c ~- • 

X f t - - t o - ( s ( ~ ) )  sin [q (~) + q) (u, ~)]d~+Tyo ~- . 

Hence 

- -  % pUooayo 

--1 
co- f t --/o. (.~ (5)) 

= ~ -  - o o  / (s g ) )  (co- + ~)'/ '  
sin [q (~) + �9 (u, 5)1 d~ + 4~N, 

- - 1  

N = e a  ! s i n [ q ( ~ ) @ O ( u , ~ ) ]  d~ .  
_ ~  / (s (U) (c~ + ~-.)V-, 

(1.9) 

To find u(g) we construct a nonlinear integrodifferential equation. 
Writing out the Limiting values of the function F(g) on the interval 
[ - -1 ,1]  of the real axis of the g-plane in accordance with Sokhot- 
sMi's formulas,  we obtain 

v = p ( ~ ) + J ( u , ~ ) ,  I g [ ~ < i ' , .  

On a free streamline,  where the pressure is constant, the Ber- 

noulli  integral has the form: 

V ~ + 2gy = eonst .  

Differentiating and using the relations 

dep 
V = Voe u, dy = dS sin O, dS ~ ~ - - ,  0 = - -  v, 

we obtain the equation 

u g )  = k I c~ 
- r  ( co- + ~o-)~/' 

Here 

- -  e -au sin [P (~) -}- J (u, ~)1 d~ . 
(1.10) 

g ~  
x =  2yos ,  ~ [ - - l , l ] .  

We find the solution of Eq. (1.10) in the space of the continuously 
differentiable functions Ct. G. N. Pykhteev reduces an extensive 
group of jet  problems to the solution of an equation of the type (1.10), 
which he calls the general  equation of jet  theory [5.6].  He has proved 
a theorem for the existence of a unique solution for the basic equation 
in jet  theory. In relation to our equation this theorem has the form 

that follows. 
Theorem 1. If k < k. = c /18.94,  in the sphere ~ r .  there exists the 

unique solution u(g) satisfying the condition u ( - 1 )  = 0. This solution 
can be obtained as the l imit  of the sequence 

U 0 = 0 1  
co- 

up+ x = X f (co-q- ~")'/' 
- - I  

- -  e - ~  sin [p (~) -l- J (un, E,)] d5 , 

all& 
i t ,  

aeJ / 

/ 
/ v 
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whose rapidity of convergence is estimated from the inequality 

II u - -  u~ II e, < (L / L*Fr , .  The quantity r, is found from the graph 
shown in Fig. 4, where u = 7.519 k / c .  

For any fixed, sufficiently small  value of the parameter  k Theo- 
rem 1 guarantees the existence and uniqueness of a solution for basic 
equation (1.10) and gives a method of solution. However, the region 
of values for k is small.  For a somewhat broader region of values for k 
it  is possible to prove a nonconstructive existence theorem. 

Theorem 2. For any k < c/16.31,  integral equation (1.10) has at 
least one continuously dffferentiable sointion u(U satisfying the con- 
dition u ( - 1 )  = 0. 

Proof. Let fir be a sphere in the space C 1 of continuously differ- 
entiable functions defined on the interval [ - 1 , 1 ]  and satisfying the 

conditionsl[ u (g)lie, < r, and u (--1) = 0. Here 

II u i~)/I ~, = max I u" (~) [ . [-1,1] 

Then, obviously, lu(g)l - 2r on ( - 1 , 1 ) .  The sphere a r  is a closed 
set in Banach space. The operator 

Tu = ~, f c ~  e-SU sin [p (~) + 
--~ (ca + ~0-)~/~ 

+ J (u, ~)1 dL ~ ~ [--  I d]  

operates from fir in the space C1. It  is easy to see that 

U Tu (~) lie, % ~ (t / c)e ~r . 

If k ~ rc / e ~r, Tu maps O r onto itself. The ratio r / e er has a 
max imu m at r = 1/6 ,  which is equal to 1/16.31. 

We will show that the operator Tu is perfectly continuous. By de- 
finition 

CZ 

It Tul  - -  Tu*. I~, = max (ca + ~a) "1' • 

X {e -zu sin [p (~) + 3ull - -  e -3u~ sin [p (~) + Jual} �9 

Inside the braces on the right-hand side we add and subtract the 
expression 

e-$I/1 sin [p (~) + J%] �9 

We can write the inequalit ies 

I e -a% - -  e-a% [ ~ e6r 3 I ur - -  us I ~ 6e or II ul - -  ue II %, 
I s in[p (~) + Jua] - -  sin [p (~) + Ju~l I ~< ~llux - -  ua!l q .  

The quantity ~ = % n (t + 2 In 2) was found by G. M. Pykhteev 
[6].  Then 

[1Tul --  Tu.= II~, < (6 + ~) e 6' ~-II ~ - -  ~-+ II~,. 

and this proves continuity of the operator Tu. 
The mapping Tu transforms each bounded set of the space C 1 into 

a bounded set of the space C1 ~ for functions whose first derivative sat- 
isfies a HOlder condition with the same exponent cr as that with which 
the function f(s) satisfies a HSlder condition. This mapping is compact.  

Consequently, the operator Tu is perfectly continuous and maps a 
convex set of Banach space onto itself. Then confirmation of the theo- 
rem follows from the Schauder principle. 

We now determine the constants entering into the solution of the 
problem. From the contour in Eq. (1.6) i t  follows that the arc length 

- - I  
dt (i.ii) 

S o = ~ o  N~t, Nl :C~" I /(s(t))(co-_}_t..) % " 
- - o o  

Then the Froude number,  calculated from S0, is 

Vco 1 (1.12) 
F r =  Vo t f ~ X N I "  

Satisfying the Bernoulli integral at two points of the zero stream- 
Line--at infinity and at the point of convergence of the j e t - a n d  using 
the expression for the Froude number Fr and the cavitation number we 
have: 

P o o -  P0 Vo a + 2 Yo 
- -  1/2pVoz 2 Vco ~ Fr" So - -  1 (1.13) 



Here, ys is the ordinate of separation point A and is found from 
(1.6). 

Lastly, from the condition at infinity in the physical plane, using 

(1.4) we find --I 
V~ c ~ In f 

In 
v0 ~ ~ ~ ~ + --co 

1 c o  (1.14) 
~ ,n, 

+ - ~  dt  + ~ "  t" + c" 

Thus, the seven parameters  X, F, o, c, V~o/V0, y0, and ~ / V a  
must satisfy conditions (1.11), (1.12), (1.13), and (1.14). We assign 
the physical parameters  V~/V 0, Fr, and So. It is easy to see that the 
above system of equations for the parameters k, c, ~o0/V0 and o will 
be solvable if i t  is possible to solve Eq. (1.14) for c. We rewrite Eq. 
(1.14) in the form: 1 

c = B (c) R (c)= __ 7 (in V~ ---4- C.~ --~1 ~ ~ U ( t )  d t )  , 

:t (1.15) 
i l n / ( s ( O )  dt 

Y = t + c~"t ~ * 
- -1  

Theorem 3. Let the conditions of Theorem 1 be satisfied. Then 

for any 5 and a such that 0 < 6 < a < ,o  and for the ratios V0/V~o sat- 
isfying the condition 

5 2r 1 Vo ~x 2r 1 + J + --~- arc tg y < In-v-~ arctg , 
(1.16) 

Eq. (1.15) has at least one solution C ~ [5, ~]. 
We first show that the solution of Eq. (1.10), which k(c) is given 

by the formula 
Voo~ 1 1 
Vo s 2F ~ N~ (c) ' 

depends continuously on the parameter  c. 
Let the value of c~ correspond to the function u~(~) and the value 

of c~ to the function ux(g). As a result of rather clumsy calculations we 
obtain the inequality 

M e  ~r 
] u l  - -  us I < i i 0.46teSt I c~ - co I 

where M is a positive constant. Hence there follows continuity of the 
function u(g,c)  with respect to the parameter  c, since r < r .  = 0.139 
on the basis of Theorem 1. 

The operator R(c) maps the sphere K = {c; ~cil -< (a  - 5:)/2} of me 
space R~ into a closed set of elements of the same space bounded with 
respect to the norm by the quantity 

7 l g - v ~ + 2 r a r c t g  + 6 + ~ 2  

Here t]c I1 = [ c - -  ~/~ (5 + a) [. Moreover, in view of inequalit ies 
(1.16) the operator R(c) possesses the property tlR (c)Ii "% ~/~(a - 5), if 

II c II = ~I~ (~ - -  a ) .  
The space R 1 is Euclidean. Any bounded set of elements  of Euclid- 

ean space is compact .  Consequently,  the operator R(c) is continuous 
and compact ,  i . e . ,  perfectly continuous. Then, on the basis of the 
generalized Schauder principle [12],  a fixed point exists in the sphere, 
and this proves the theorem. 

Let, for example ,  ~(s) be such that ] (s (t-~)) = [h  (t)] x+c't*, where 
f~(t) is a positive, continuous, monotonical ly increasing function satis- 
fying a HOlder condition and the conditions f~(0) = 0 and fi(1) = 1. 
Then the upper boundary for the region of variation for in (V0/Voo) is 
strictly greater than the lower (.inequality (1.16)), if for any 6 >10 we 
select 1 1 (l ) 

- -1  

w i~articular ease. We specify the dependence of the velocity at 
the arc on the arc coordinate in parametr ic  form V = VoF~(n ) and S = 

= SoFz(n), where F~(n) and F~(n) are single-valued positive functions of 
the variable n ~ [n~, n~l, satisfying a HOMer condition and the condi- 
tions 

F 1 (nl)  - -  F 2 (hi)  = 0, F 1 (~'t2) = F 2 (n2) = t .  

Then the function S(s(~)), in whose terms the general  solution was 
constructed, 

i (~ (~)) = / ~ :  (n (b)  , 

and n(g) is found from the condition 7Z 
~P0~ % + V o &  I F~ (n) F~: (n) tin, - -  o~ < ~ < - -  I .  

V~.T+ t o- 
Let, for example ,  

A =  I (~ + l ) n d n  , ~ =  ] / { + c  ~- 

Then 

V~-"- ~ ( ~_ V~T=-_ i ),i: 
. = ~ , i (.~ <.)) = \ ~ + V V = I  

Substituting jC(s(~)) into the formulas for q(~) and p(~), we obtain 

Jt 
q (4) = - -  "~" (sign ~), I ~ t > / i  

p ( , ) = - -  2arc tg (--~ T f ~ ) ,  l ~ . l ' '  �9 

We construct the solution of basic equation (1.10) in the first 
approximation from the solution of the problem for an imponderable 
fluid u0(~) = O: 

I ' ' ] u, (~) = - -  ~c ~ 
(c ~" + r (l + c~) '7' " 

We write from (1.6) the equation of the contour, 

r - -  ~P~176 I ~ "-  ] / ' ~  sin q) (4) d~, 
V0 --o~ (c"' § ~)}:" 

~' = - -  q~'?c~- f ~ -~ l f ~ - t - -  t cos @ (4) U~ 
'" V0 --~ (co + ~),t~ ' 

and from (1.7) the equation of the free surface, 

x ~ X0 ~- ~0C2 ~ e -u  

r I - -  V 1  - ~  ] 
x cos i - ~ arc t~" ~ + q) (4)~ d~ , 

?)=y0  + cp0r'- ~2~ ~(  e u 

H e r e ,  

@ (4) = - ~ L (c ~" + ~..,)v, 

x l n  ( l - ~ ) [ c ~ - ~ = g ( T T d ) ( c 2 + ~ )  + 
(1 + 4) [c -~ + ~ + g ( 3 - -  c~) (~"~ + ~?-) 

t t + 4  
+ ~ In 1 ----~" 

From the equation of the contour it is clear that in an imponder-  
able fluid, when r  -= 0, the contour is a ptate arranged at right 
angles to the flow. 

The system of equations for the parameters takes the form: 
, ~ 0  C 2 

g ~  K ( ~ /  

Vo 2 2 Yo Vco 2 1 
V~ 2 Fr ~ N1 - -  Vo 2 NiVr ~ ' 

V ~  1 V l + c 2 - - c  
ln~j= gh~ V(+c"+J-- 
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Fig. 5 

( }/- '1--~ t - -  c arc tg . (2.1) 

If we set X = const in (2.1) and let c take values from zero to in- 
finity, then from (2.1) we obtain the parametric function Fr(o). Thus, 
the graph of function Fr(o) is given in Fig. 5 for E = V2~ c. The curves 
corresponding to smaller values of k lie above the given curve. Con- 
sequently, points lying above the curve shown in Fig. 4 determine the 
region of values for the cavitation numbers and Froude numbers for 
which a unique solution of Eq. (1.10) exists. 

Let 8 = 0.1 and a = 1. Then, if So > 0, (V 0/V~) ~ [1.28; 2.091 
and Fr > 74.2, on the basis of Theorem 3 Eq. (2.1) is solvable for 

~0/V0, k, o, and c, where c ~ [0.1; t1. 
w Cavttattonal flow in the lower half -plane,  If we reflect the 

flow region shown in Fig. 1 onto the lower half-plane and assume, as 
before, that the gravitational acceleration vector is directed vertically 
downward, we obtain a flow pattern analogons to the starting pattern, 
but for the lower hald-plane. However, the same object is achieved 
more simply by changing to the reciprocal vector. Then the general 
solution of the problem for the lower haft-plane takes exactly the same 
form as for the upper half-plane, the only difference being that now 
the parameter X has a minus sign, because the Bernoulli integral at the 
free surface has the form: 

V 2 -- 2gy = const. 

In particular, the theorem of existence for a solution of basic equa- 
tion (1.10) remains valid. 

Thus, solutions of Eq. (1.19) at k < 0 correspond to flows in the 
lower half-plane and solutions at X > 0 to flows in the upper half-plane. 

w Limiting case. Let the are contract into a point. We see that 
there are nontrivial solurions to the problem of the flow for a ponderous 
fluid in the upper haft-plane part of whose boundary the pressure re- 
mains constant, while, as before, the rest of the boundary is straight 
and horizontal (Fig. 6). This case cannot be obtained as a particular 

case from the general solution of the problem. 
We take as the parametric region the upper haft-plane ~ = ~ + i~ 

(Pig. 7). Assuming that the streamline COBO'C is the zero streamline 
and that the velocity potential at the point O is equal to zero and at the 
point O' equal to ~0, we easily see that 

W = (fro / 2) (~ + t ) .  (4.1) 

The Jonkowski function 

(1 dw~ 
F = I g  ~ -0  -d~z ) ' 

where V 0 is the velocity at the point O, is analytic in the upper half- 
plane g and satisfies the conditions that follow on the real axis g: 

l m F ( ~ ) = 0 ,  I ~ I > ~ L  n e F ( g ) = u = l g ( V / V o ) , l ~ l < l .  

Fig. 6 

(~) 
C o o' t 

Fig. 7 

The function F(Q is found from the solution of the mixed boundary- 
value problem of the theory of analytic functions. The solution of the 
problem is bounded at both ends: 

1 
"V~2- t  ~ u(t) at F (~) ~ t - ~  ~ (4.2) 

--1 

Repeating all procedures that led to Eq. (1.10), we obtain 

u' (~) = ~,e-ZU sin l u ,  
1 

I u - -  ~ f i - -~"  I u(t) dt l~l<i. (4.3) 
t - - ~  r  --1 

Solving Eq. (4.3) for u(g), from (4.1) and (4.2) we obtain the gen- 
eral solution of the problem. 

Equation (4.3) is nonlinear and homogeneous, i .e . ,  u = 9 is its 
solution, tt proves to have bifurcation points. We find the Freehet 
derivative of the nonlinear operator in the tight-hand side of Eq. (4.3) 
and construct the equation 

u' (~) = k l u ,  I ~ l ~ < l .  (4.4) 

In linear equation (4.4) we make the change of variables ~ = cos o 
and then integrate the tight-hand side by parts. The integrated part is 
equal to zero and Eq. (4.4) takes the form: 

u ' ( ~ ) = k  s in~ iu . (6 )  l n s in lb . (6+~)  d6, 
n ~ sin l/.~ (6 --  ~) 

o (4.5) 

z E [0, ~l. 

The Fredholm operator with kernel 

K ( ~ , 6 ) = l n  sin */2 (~ + 6) 
sin 1/o. (~ -- 6) L 

will be perfectly continuous [9]. The second integrated kernel 

�9 sin a/~ + t )  sin~b. ( t + o )  K2(6 z ) = ~ s m 6 1 n [ ~  (6 ~ J ]sin /2 (6 - - t )  s i n t l n  ~ [ d t  

possesses the property that, on the entire interval (0,Tr), Kz(5,6) is 
greater than zero and vanishes only at the ends of the interval. Then 
from a familiar theorem [10] Eq. (4.5) has a unique nonnegative fun- 
damental function. The corresponding eigenvalue is positive, simple, 
and less than the modulus of any other eigenvalue of this equation. 
When the eigenvalues of the linear equation are odd-multiple, it is 
legitimate to linearize the nonlinear equation to determine its bifurca- 
tion points [11]. Consequently, the starting equation (4.3) has at least 
one bifurcation point. All other bifurcation points of Eq. (4.3), if there 
are any, will correspond to flow in the lower half-plane. 

The author thanks G. N. Pykhteev and V. N. Monakhov for their 
advice and N. A. Sadovskaya for assisting with the numerical calcu- 
lations. 
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